Discontinuous Galerkin Finite Element Approximation of Nondivergence Form Elliptic Equations with Cordès Coefficients

نویسندگان

  • Iain Smears
  • Endre Süli
چکیده

Abstract. Non-divergence form elliptic equations with discontinuous coefficients do not generally posses a weak formulation, thus presenting an obstacle to their numerical solution by classical finite element methods. We propose a new hp-version discontinuous Galerkin finite element method for a class of these problems that satisfy the Cordès condition. It is shown that the method exhibits a convergence rate that is optimal with respect to the mesh size h and suboptimal with respect to the polynomial degree p by only half an order. Numerical experiments demonstrate the accuracy of the method and illustrate the potential of exponential convergence under hp-refinement for problems with discontinuous coefficients and nonsmooth solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin Finite Element Approximation of Hamilton-Jacobi-Bellman Equations with Cordes Coefficients

We propose an hp-version discontinuous Galerkin finite element method for fully nonlinear second-order elliptic Hamilton–Jacobi–Bellman equations with Cordès coefficients. The method is proven to be consistent and stable, with convergence rates that are optimal with respect to mesh size, and suboptimal in the polynomial degree by only half an order. Numerical experiments on problems with strong...

متن کامل

Discontinuous Galerkin Finite Element Approximation of Hamilton--Jacobi--Bellman Equations with Cordes Coefficients | SIAM Journal on Numerical Analysis | Vol. 52, No. 2 | Society for Industrial and Applied Mathematics

We propose an hp-version discontinuous Galerkin finite element method for fully nonlinear second-order elliptic Hamilton–Jacobi–Bellman equations with Cordes coefficients. The method is proved to be consistent and stable, with convergence rates that are optimal with respect to mesh size, and suboptimal in the polynomial degree by only half an order. Numerical experiments on problems with nonsmo...

متن کامل

A Finite Element Method for Second Order Nonvariational Elliptic Problems

We propose a numerical method to approximate the solution of second order elliptic problems in nonvariational form. The method is of Galerkin type using conforming finite elements and applied directly to the nonvariational (nondivergence) form of a second order linear elliptic problem. The key tools are an appropriate concept of “finite element Hessian” and a Schur complement approach to solvin...

متن کامل

L2-Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ∞ L2 error estimates of discontinuous Galerk...

متن کامل

A weak Galerkin mixed finite element method for second order elliptic problems

A new weak Galerkin (WG) method is introduced and analyzed for the second order elliptic equation formulated as a system of two first order linear equations. This method, called WG-MFEM, is designed by using discontinuous piecewise polynomials on finite element partitions with arbitrary shape of polygons/polyhedra. The WG-MFEM is capable of providing very accurate numerical approximations for b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2013